UbiSec&Sens
Ubiquitous Sensing and Security in the European Homeland

www.ist-ubisecsens.org

FP6-2004-IST-4

PRIORITY IST-2004-2.4.3
Towards a global dependability and security framework

Instrument: Specific Targeted Research Project (STREP)
Contract No: 26820
EU Contribution: 1.9 MEUR
Starting Date: 1/1/2006
Duration: 36 month

Co-ordinator: Uwe Herzog
EURESCOM
herzog@eurescom.de

Partners

01 EURESCOM – Coordinator Germany
02 RWTH Aachen Germany
03 INRIA France
04 IHP Microelectronics Germany
05 INOV Portugal
06 Budapest University of Technology and Economics Hungary
07 Ruhr University Bochum Germany
08 NEC Network Development Laboratories U.K.
Project Goals

• to provide a security and reliability architecture for medium and large-scale WSNs acting in volatile environments,

• apply a radically new design cycle for secure sensor networks,

• to provide a complete toolbox of security and reliability aware components for sensor network application development,

• focus on the intersection of security, routing and in-network processing,

• solutions will be prototyped and validated in the representative WSN application scenarios of agriculture, road services and homeland security
Centre of Gravity

security & reliability
routing & transport
in-network processing

authentication “re-recognition”
key pre-distribution
WSN access
secure routing
concealed data aggregation
secure distributed data storage
data plausibility
discrepancy query

routing & reliable transport
aggregator node election
reliable transport
secure routing
Objectives

- flexible routing and in-network processing,
- concealed data aggregation,
- data aggregation with discrepancy query and multiple monitoring sensors,
- encrypted distributed data storage,
- enhanced key pre-distribution,
- provably secure routing,
- resilient data aggregation,
- pairwise/groupwise authentication or re-recognition,
- energy-efficient components
Strategy

design cycle is an iterative process to

• incorporate a balanced security level right from the beginning, and

• ensure the energy-efficient and storage-sensitive cross-layer integration and optimisation of the security features.

Assumptions

• device classes: both, tamper resistant and non-tamper resistant devices

• radio standard: IEEE 802.15.4 WPAN
Dolev-Yao:

WSN adapted

Dolev-Yao:

Paradox

state of the art:

Threat-Model

with up to

5 years delay [Gligor05]

Design Options

- Tamper-resistant unit (⇒ too expensive)

- “Probabilistic” security (⇒ attacker receives only limited gain)
Traffic Pattern…

- reverse multicast:

- changing roles:

- in-network processing:

- aggregator hierarchy:

\[
\begin{align*}
\text{x} &= a + b \\
\text{y} &= c + d \\
\text{z} &= r = x + y
\end{align*}
\]
“How to conceal WSN traffic?”

<table>
<thead>
<tr>
<th>Option 1: Hop-by-Hop Encryption</th>
<th>Option 2: End-to-end Encryption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pros:</td>
<td>Pros:</td>
</tr>
<tr>
<td>▪ available (RC5 [TinySec], AES-CCS64 [IEEE 802.15.4])</td>
<td>▪ saves energy consuming encryption operations in the backbone</td>
</tr>
<tr>
<td>Cons:</td>
<td>▪ no lack of security at aggregating backbone nodes</td>
</tr>
<tr>
<td>▪ trade-off between system security vs. aggregator node election flexibility</td>
<td>▪ most flexible for aggregator node election process over different epochs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Option 2a: E2E-E</th>
<th>Option 2b: E2E-E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pros:</td>
<td>Pros:</td>
</tr>
<tr>
<td>▪ available (RC5, AES..)</td>
<td>▪ low trans. overhead</td>
</tr>
<tr>
<td>Cons:</td>
<td>Cons:</td>
</tr>
<tr>
<td>▪ high trans. overhead</td>
<td>▪ How to achieve?</td>
</tr>
</tbody>
</table>

Cons:
- lack of security at aggregating backbone nodes
- additional energy for enc/dec operation in the backbone
Concealed Data Aggregation (CDA):

- additive/multiplicative privacy homomorphism (\mathcal{PH})

\[
\begin{align*}
 a + b &= D_k(E_k(a) \oplus E_k(b)) \\
 a \cdot b &= D_k(E_k(a) \otimes E_k(b))
\end{align*}
\]

with groups $(Q, +), (Q, \cdot), (R, \oplus), (R, \otimes)$ and $E : K \times Q \rightarrow R$

\[
D : K \times R \rightarrow Q
\]

with $a, b \in Q$, and $k \in K$

- aggregation functions
 - average,
 - variance and
 - movement detection
 - no min/max

- suits also for aggregator hierarchies
Application I (Agriculture)

- protection of the cultivated plants from fungal diseases
- plant protection has a special meaning due to the high quality requirements
- sensors for the collection of the weather process can be the basis for prognosis models for pest control
- plausibility, in-network processing of the “average”, distributed and replicated storage of monitored data
Application II (Road Service)

- driver receives information about the current road status at critical points on the road ahead (Daidalos II)
- WSN is connected to a fixed network (Daidalos II)
- fluctual information can then be incorporated into a digital route planner response and will be displayed on an on-board unit
- WSN requires a long lifetime, high reliability and robustness
- authentication, confidentiality, plausibility, real-time responsiveness
Application III (Homeland Security)

- detect/mitigate the effects of terrorist nuclear, chemical and bio-chemical attacks in public places (airports, bus stations, train stations, underground metro, stadiums)
- protection of special high risk events, like party conventions, political demonstrations, visits of controversial people
- WSN highly reliable and robust even if considerable parts of the WSN are dormant, already inactive or destroyed
- “maximum/minimum” aggregation functions, encrypted data storage
- strong link to ESDP, roll-out at EU-25 border
WSN Security Toolbox Concept

WSN application space

- weak security
 - Agriculture
 - asynchronous
- strong security
 - Homeland
 - synchronous
- synchronous/asynchronous
 - Automobile

- flexible routing
- in-networking
- concealed data aggreg.
- plausible and resilient
- Key pre-distribution
- secure routing
- authentication re-recognition
- sec. distr. data storage
- discrepancy monitoring
- hard & softw. accelerators

© UbiSec&Sens consortium
Project Summary

Wireless Sensor Networks (WSNs) are an exciting development with very large potential to have a significant beneficial impact on every aspect of our lives while generating huge opportunities for European industry. What is needed to kick off the development and exploitation of WSNs is an architecture for medium and large scale wireless sensor networks integrating comprehensive security capabilities right from the concept stage. This would support the rapid development of sensor networks and would open up the application domain for commercial activities.

UbiSec&Sens intends to solve this by providing a comprehensive architecture for medium and large scale wireless sensor networks with the full level of security that will make them trusted and secure for all applications. In addition, UbiSec&Sens will provide a complete toolbox of security aware components which, together with the UbiSec&Sens radically new design cycle for secure sensor networks, will enable the rapid development of trusted sensor network applications.

The UbiSec&Sens approach is to use three representative WSN scenarios to iteratively determine solutions for the key WSN issues of scalability, security, reliability, self-healing and robustness. This will also give a clearer understanding of the real-world WSN requirements and limitations as well as identifying how to achieve a successful rollout of WSNs.

The results of UbiSec&Sens are a necessary step to progress the field of security and communication research in Europe and, as well as advancing the competitiveness of the European industry, they assist the European Commission to develop more comprehensive programs for innovative socially and economically beneficial sensors.

UbiSec&Sens is an Specific Target Research Project (STReP) in the thematic priority 'Towards a global dependability and security framework' of the EU Framework Programme 6 for Research and Development. 8 partners from industry and academia are involved in the project. The project started in January 2006 and has a duration of 3 years.

News

- 22/23 March at INRIA Grenoble
- UbiSec&Sens presented at DistTrust Workshop, 23th April, UPC, Barcelona
- Next Meeting 11/12 July at INOV Lisbon
- ESAS’2006 (CIF) in conjunction with ESORICS’2006